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Abstract Thc small deformation clastic -viscoplastic constitutive equations of Bodner Partom are
modi lied to model strong non-proportional loading paths such as experienced in corner turning
tests and certain cases of inelastic buckling. An essential generalization is made to the flow rule.
causing the magnitude and direction of plastic strain rate to become an explicit function of deviato ric
total strain rate as well as of stress and hardening variables. With this and other modifications. the
eljuation, indicate some of the important characteristics of the response to abrupt changes in the
loading direction. Thcse arc: (a) a reduced effective shear modulus: (b) a transient drop in the
elfcctive stress: and (c) a transient non-coaxiality of the plastic strain rate relative to the deviatorie
stress. Predictions of the modified theory compare reasonably well with experimental values for
inelasllc torsional huckling of axially compressed cruciform columns and for corner turning tests.

I. lNTRODl'CTIO:--.l

Theories of plastic deformation are Intended to apply for all loading conditions. However,
some cases of non-proportional loading where the ratios of the stress components, and also
those of strain rate. are not constant seem to offer special difficulties. As examples, the
classical incremental theory of plasticity does not adequately predict the material response
to a rapid change in the direction of imposed straining. e.g. a corner turning test, nor does
that theory indicate realistic bifurcation loads should buckling initiate abrupt changes in
the relative proportions of the stress components.

Buckling in the plastic range has been traditionally treated by retaining elastic buckling
formulae in which effective or reduced moduli are utilized. For example, Shanley (\947),
following Engesser (IXX9). argued on the basis that elastic unloading would not occur that
the governing modulus for bifurcation buckling of columns in bending is the tangent to the
stress strain cune at thc applied stress level. The general bifurcation theory of Hill for rate
independent plasticity indicates that under the condition of continuous loading, bifurcation
is controlled by the instantaneous moduli of the elastic-plastic stress-strain relation. Also,
the formulae presented in a table by Stowell (1948: p. 2) and the writings of a number of
other investigators suggest that the reduced modulus for buckling in the plastic range
depends on the buckling mode and hence on the direction of straining at the onset of
buckling.

An essential ditliculty in th~ treatment of plastic buckling is the determination of
controlling moduli for test configurations that exhibit non-proportional loading paths at
the onset of buckling (compared to the initial state). To obtain agreement with test data,
various investigators have expressed these moduli as functions of the tangent and secant
moduli as well as the elastic moduli. e.g. Gerard and Becker (1957). The secant modulus
was indicated by Stowell (1951) to be relevant for cruciform columns that buckle in
torsion and also by Gerard (1946) and others for plate buckling and various shell buckling
situations. Paradoxically. these test results are not properly predicted by incremental theory
of plasticity associated with a standard yield surface. whereas the generally inapplicable
deformation theory s~ems to supply reasonable results. This subject is thoroughly discussed
by Hutchinson (1974) in his ~xtensive review of plastic buckling. The discrepancy is par­
ticularly demonstrated in the case of inelastic torsional buckling of axially compressed
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cruciform columns, where the loading path can be approximated by a 90 corner turning
test. For this case, incremental theory predicts elastic buckling while the test results seem
to correspond to the secant modulus in accord with deformation theory. Deformation
theory would also supply the tangent modulus for bifurcation buckling of columns in
bending.

A number of investigators have pointed to the need for the shear modulus to be
reduced from the elastic value for multiaxial stress cases where shear strains and stresses
generated at buckling were zero prior to buckling. Bushnell (1976) suggests use of the
secant modulus in shear in the otherwise incremental plastic flow formulation of the
BOSOR5 numerical program for buckling of plates and shells. Recent suggestions of this
type have also been made by Inoue and Kato (1993), and Inoue (1994).

Attempts to improve the predictive capability of incremental plasticity theory have
followed two directions. One is to modify the basic formulation of the particular problem
to consider factors such as initial imperfections and more realistic boundary conditions,
e.g. the works of Onat and Drucker (1953), Gjelsvik and Lin (1987), and Tugcu (1991).
Those considerations would lead to the pre-buckling state containing the stress components
that are generated at buckling so that the relative non-proportionality of those components
at buckling would be reduced. The other method is to modify the smooth yield surface of
standard incremental theory to admit the formation of corners (vertices) at the loading
point. This approach [e.g. Christoffersen and Hutchinson (1979)] permits the generation
of a wider range of strain rate components corresponding to non-coaxiality of plastic strain
rate and deviatoric stress at buckling. The connection between deformation theory and an
incremental theory in which vertices can develop at the load point of the yield surface has
been discussed by Budiansky (1959) and Hutchinson (1974). However, full experimental
support of the existence of corners is lacking and the situation is still unclear. A more recent
review of the subject and exercises that combine the two approaches is contained in the
paper by Needleman and Tvergaard (1982).

In the present paper, an alternative procedure based on modification of the plastic
flow law is proposed which leads to a reduced shear modulus for non-proportional buckling
paths. The formulation relies on the small strain, "unified" elastic-viscoplastic theory of
Bodner-Partom (B-P) (1972, 1975) which does not require a yield surface or loading/
unloading conditions. That theory was initially developed for proportional loading
conditions but has been modified to account for multiaxial directional hardening and
various non-proportional loading effects such as additional hardening associated with that
loading (Bodner, 1985, 1987). Unlike most other formulations, the B-P theory does not
rely on "back stress" parameters and treats reversed loading by introducing a scalar
effective value of a directional hardening tensor. For convenience, the B-P theory is briefly
summarized in Section 3.

Two generalizations of the B-P theory are proposed. The first generalization, which is
presented in Section 4, shows that it is possible to develop an incremental theory which
indicates a reduced effective shear modulus for non-proportional buckling paths. The main
idea associated with this generalization is the assumption that the direction of the plastic
strain rate depends explicitly on the deviatoric total strain rate as well as on stress, tempera­
ture, and history dependent hardening variables. The governing viscoplastic flow rule is
then essentially different from the usual constitutive equations for plastic strain rate which
are independent of the total strain rate. It therefore follows that the present formulation is
not included in the class of theories analysed by Tvergaard (1988) who, among others, has
shown that bifurcation buckling of elastic-viscoplastic structures would be elastic for
constitutive models of the standard form.

Specifically, we assume that the direction of the plastic strain rate depends not only on
the deviatoric stress but also on another deviatoric tensor, that is the component of the
deviatoric total strain rate normal to the deviatoric stress. That term also contains an
additional parameter which depends on the hardening variables and influences the mag­
nitude of the reduced effective shear modulus for corner turning tests. This modification
produces realistic values of the reduced effective shear modulus for non-proportional
buckling paths as well as non-coaxiality of the deviatoric stress and the plastic strain rate.
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Since the reduced effective modulus for buckling is sensitive to changes in the direction
of loading at the onset of buckling, important information about the material response
under such situations can be studied using well controlled corner turning tests. Experiments
of corner turning tests have been conducted by various groups of Japanese investigators in
the 1970s and early 1980s [e.g. Ohashi and Ohno (1982)], who observed non-coaxiality of
plastic strain rate and deviatoric stress and a significant drop in effective stress at the change
in the direction of straining. However, they did not suggest the relevance of their studies to
buckling problems. Simulations of these corner turning tests using the modified equations
of Section 4 indicated the drop of von Mises effective stress, but the value obtained was too
small. In order to enhance this drop, the theory was further modified in Section 5.

Since the rate-dependent theory developed in Sections 4 and 5 predicts nearly rate­
independent response when one of the parameters, 11, becomes large, an attempt was made
to develop an associated rate-independent theory which uses a yield surface. The theoretical
difficulties with such a rate-independent theory discussed in Section 6 emphasize the import­
ance of the rate-dependent nature of the viscoplastic theory used here as a basis for the
modifications of Sections 4 and 5.

In the following section, a discussion is presented of the experiments reported by
Stowell (1951) on plastic buckling of cruciform columns and the corner turning tests of
Ohashi and Ohno (1982). The B-P theory is briefly summarized in Section 3, and the
essential modifications of the theory are described in Sections 4 and 5. Also, Section 6
discusses some of the difficulties encountered with an associated rate-independent theory
which uses a yield surface. The modified equations of Section 5, which include the changes
introduced in Section 4, are capable of modeling three main effects observed in corner
turning tests: a reduced effective shear modulus, non-coaxiality between the plastic strain
rate and the deviatoric stress, and the transient drop in effective stress. As a consequence,
these constitutive equations should be capable of analysing bifurcation buckling and also
post-buckling behavior to the limits of applicability of a small strain material model.

2. DISCUSSION OF EXPERIMEl\TS

In order to critically discuss the work of Stowell (1951) on buckling of columns with
a cruciform shaped cross-section, it is convenient to recall some basic equations associated
with the incremental theory of plasticity. To this end, attention is confined to the small
strain (displacement) purely mechanical theory and let: (1 denote the stress, p the pressure,
(1' the deviatoric stress, e the total strain, e' the deviatoric total strain, and ep the plastic
strain which is deviatoric due to plastic incompressibility. Here, the usual form of Hooke's
law for isotropic elastic response is retained, so that

(1 = -pI+(1',

p= -k(e']), (1'=2G(e'-e p ),

(1 a)

(I b,c)

where I is the unit tensor, k is the bulk modulus, G is the shear modulus, and the notation
A' B = tr (ABT

) denotes the inner product between two second order tensors A, B. Also,
the von Mises effective stress (Jeff and the effective deviatoric total strain cerr are defined by

(2a,b)

Furthermore, the accumulated deviatoric total strain S for general loading paths is defined
by integrating the equation

(3)

where a superposed dot means time differentiation and the notation IAI = vA' A is the
magnitude of the tensor A.
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As a consequence of plastic incompressibility, the volumetric response (lb) remains
elastic so that plasticity can only effect the direction and magnitude of the deviatoric stress
(Ie). This means that when searching for an appropriate reduced modulus for plastic
buckling, it is convenient to write the elastic buckling criteria in terms of the moduli k and
G. Then the reduced modulus is assumed to be determined by the elastic formula with G
replaced by G. For example, the elastic torsional buckling analysis of the cruciform column
developed by Stowell (1951 : eqn A33) gives the critical stress aCT for the onset of elastic
buckling,

(4)

where L is the length of the cruciform column, which is composed of four identical flanges,
each having width b and thickness t.

For plastic buckling, it is assumed that formula (4) still holds with aCT replaced by the
experimental value at of the critical stress, G replaced by its reduced value G, and with k
remaining unchanged, so that

(5)

Here, it is tacitly assumed that relationships between the reduced values of the elastic
constants remain the same as those of the actual elastic constants so that the reduced value
£ of Young's modulus E and the increased value vof Poisson's ratio v are related to Gand
k by the formulae

I I I
F; = 3G + 9k' [

2GI1--

v=~ ~.
1+­

3k

(6a,b)

Thus, as G becomes small relative to 3k, the value of £ approaches 3G, and the value of v
approaches 1/2, as to be expected. In this regard, the problem of predicting the critical
stress for plastic buckling reduces to the problem of predicting the appropriate value of the
reduced shear modulus G.

Given values of the geometry of the column {tlb, blL}, the elastic constants, and the
measured value at of the critical stress from the experimental data for buckling, Gerard
and Becker (1957) used formula (4) to determine the elastic value of critical stress and
defined the normalized experimental buckling stress 1'/ by

(7)

Alternatively, the quadratic equation resulting from eqn (5) for the value of the reduced
shear modulus Gcan be solved to obtain

where r is defined by

- - 3k l {2 (at )(b)2}'!2]G - - r+ r +4 - -
2 3k t '

(8)
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(9)

and the appropriate sign of the solution is chosen so that eqn (8) predicts the correct
limiting value when blL is negligible. In analysing experimental data of plastic buckling, it
is common to assume that the increased value v of Poisson's ratio is 1/2 [Stowell (1948:
p. 2)]. This approximation is equivalent to taking Glk equal to zero in eqn (5) so that the
approximate value GI of G is given by

(b)2
_ (T~ t

G I = -(11b)2 .
1+ -

L

(10)

Another approximation [Hutchinson (1974: p. 100)] is to neglect the term blL in eqn (10)
to obtain the approximate value G2 of G given by

(II)

The material used in the experiments of Stowell (1951) was 24S-T4 extruded aluminum
which is more commonly known today as 2024-T4 aluminum. The handbook edited by
Gray (1957) indicates that the elastic constants of many aluminum alloys are reasonably
uniform so here we take v = 1/3 and specify a consistent set of elastic constants by

k = 71.0 GPa.

G = 26.6GPa,

E = 71.0GPa, (l2a,b)

(l2c,d)

Using this value of k together with the experimental data supplied by Stowell (1951 : p. 5),
it is possible to obtain values for YJ and the normalized values of G, GJ, and G2 [associated
with eqns (7), (8), (10) and (II), respectively] which are given in Table I. It is noted that
the values of YJ and the normalized values of G are nearly identical, which means that the
terms in square brackets in eqns (4) and (5) are very similar. From Table I, the error caused
by neglecting the effect of the length of the column (G2) is significant, but the error caused
by assuming that the material is fully incompressible (G I ) is less than 4%.

Table I. Experimental data [Stowell (1951 : p. 5)] and reduced moduli for inelastic torsional
buckling of a cruciform section column

hit Llh <1~(GPa) II GIG G,/G G1/G

8 12 0.316 0.717 0.715 0.711 0.760
9 18 0.280 0.830 0.830 0.828 0.853

10 4 0.309 0.750 0.743 0.717 1.16
10 10 0.259 0.895 0.894 0.887 0.974
II 10 0.230 0.962 0.962 0.956 1.05
12 4 0.257 0.899 0.895 0.860 1.39
13 10 0.178 1.04 1.04 1.03 1.13
14 12 0.150 1.04 1.04 1.04 1.11
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Table 1. Digitized and adjusted values of the strains associated with the stress-strain
curve given by Stowell (1951) and associated secant moduli (G, = <Telf!3S)

<Tell (GPaj S G)G
-- - ------ ------------

0 0 0 0 1.00
0.119 1.00 X 10 1.81 X 10 1 1.61 X 10-' 1.00
0107 3.11 X 10 1.91 X 10' 2.60 X 10-' 1.00
0.141 3.8IxlO-' 3.46 X 10-' 3.08x1O' 0.981
0.176 4.53 X 10 4.13 X 10 .' 3.70xlO-' 0934
0295 5.00 X 10 4.58 X 10 4.12xlO-' 0.897
0.310 5.74 X 10 5.30 X 10

, 4.82x 10-) 0.807
(1.313 7.00 X 10 6.54x10 6.03 X 10-) 0.671
0.345 10.0 X 10 9.51 X 10-' 8.97 X 10- 1 0.482
0.358 12.0 X 10 11.5 X 10 10.9 X 10-) 0.412
0.367 14.0 X 10 13.5 X 10 11.9xlO-' 0.356

Table 2 lists a few points taken from the stress-strain curve given by Stowell (1951).
Since the pre-buckling stress in this experiment is uniaxial, its value is equal to the von
Mises effective stress (Jen. For clarity, the axial strain measured in the experiment is denoted
by 1:*. Figure la shows that the Young's modulus E* associated with the experimental
results is given by

E* = 64.5 GPa, (13)

which is lower than the value E appropriate for aluminum. This suggests that the compliance
of the experimental apparatus caused an error in the strain measurement. To correct for
this error, it is assumed that the actual value I: of axial strain is a linear function of (JelT given
by

(14)

where the constant (' is determined by requiring that the Young's modulus of the corrected
elastic response be E so that

I I(' = - - - = 1.42 X 10- 3 GPa -I.
E* E

(l5a,b,c)

Using this correction procedure, the values of I: in Table 2 are given and the adjusted stress­
strain curve is plotted in Fig. lb.

Next, with the help of the constitutive eq uation (1 b) for pressure, the total strain I:

may be written in the form

(16)

Thus, for monotonic uniaxial stress: the pressure p = ( - (Jen/3), and eqns ( Ib), (2a,b) and
(3) can be used to show that

(JelT
S = /;ell = I: - 9k . (17)

Furthermore, for elastic response (with sp = 0), eqns (Ie), (2) and (3) can be used to show
that

(18)

From eqns (17) and (18), together with the bulk modulus k in eqn (12a), the values of S
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Fig. I (a) Original stress strain curve of Stowell (1951): (b) adjusted stress-strain curve of Stowell
(1951): (c) effective stress versus adjusted accumulated deviatoric total strain.

given in Table 2 are determined and (Jeff versus S is plotted in Fig. Ie. Also, the values of
the secant shear modulus G, associated with the adjusted experimental data defined by

are given in Table 2.

( 19)
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Table.1. Values of the normalized buckling
stress from Gerard and Becker (1957)

rr,~ ((ira)

(UllJ
0..127
(U46
(U4lJ
0..160
O..16R
IU46
(Un

'I

0.5R I
0.606
0.44.1
0.526
(U75
0.462
0.44.1
0.404

Figure 2 shows a plot of the normalized secant shear modulus together with the values
of GjG determined by the buckling experiments of Stowell (1951) given in Table I. The
curve of G,jG is piecewise linear because only those points given in Table I are plotted. For
additional comparison, we have included values of 11 taken from the experimental data
given by Gerard and Becker (1957) which are recorded in Table 3. These additional data
points have been marked with a different symbol from those of Stowell (1951). It is noted
that the curve of G,G in Fig. 2 is slightly different from the curve associated with the
normalized secant extensional modulus Ej E given by Gerard and Becker (1957: Fig. 5).
These slight differences are caused hy the fact that the values for G,/G are obtained here
using the adjusted experimental data of Stowell (1951) taking into account the flnite value
of the bulk modulus k (noting that G)G = E, E only when k is infinite). Furthermore, the
values of E) E plotted by Gerard and Becker (1957) were presumably taken from Table 2
of Gerard (1946), which were determined by his stress-strain curve (for the same material)
and not the one given by Stowell ( 1951 ). In any case, results of the type presented in Fig. 2
have often been used to conclude that the normalized secant modulus provides a rather
good prediction of the experimentally determined reduced shear modulus appropriate for
inelastic buckling in torsion due to axial load.

Since shear stresses do not exist in the cruciform column prior to torsional huckling,
the change in loading direction at the onset of buckling is similar to that associated with a
90 corner turning test. In fact, corner turning tests can, in principle, provide important
experimental data on the reduced modulus and the non-coaxiality of plastic strain rate and
deviatoric stress during non-proportional loading. Test results have been obtained by
Ohashi and Ohno (1982) for corner turning conditions using axial force and internal
pressure in thin-walled tubes of aluminum alloy 5056 at 200 C. In order to simplify the
presentation of their experimental results which showed the influence of the third stress

o 0
<)

o
0.8

0.6

0.4
<) STOWELL (llJ 51 )

<)

0.

x
x
x

x CJEIWm & DECKER (1957)

0.2 --G/G,

a 0.1 0.2
o . (GPa)

dt

0.3 0.4

Fig. 0 Experimental values of C G for Stowell (1951). I) for Gerard and Becker (llJ57). and G. G
for inelastic torsional buckling of a cruciform column.
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AI aJloy(200'C)
s=3xlO-4 mini

Fig. 3. Experimental results for corner turning tests presented in Fig. 9 of Ohashi and Ohno (1982).

invariant, Ohashi and Ohno (1982) defined a modified effective stress it (see their eqn 14).
However, results for the reduced modulus were not presented.

For our present purposes we define the direction of loading in the corner turning tests
by specifying the components t;i of the deviatoric total strain rate s', relative to the fixed
rectangular Cartesian base vectors e, (i = 1,2,3), in terms of the expressions

(20a,b)

all other £;, = 0, (20c,d)

where S is the accumulated strain rate defined by egn (3) and the angle ox determines the
loading direction.

Figure 3 shows the results of corner turning tests [Ohashi and Ohno (1982: Fig. 9)] at
an accumulated strain rate S of 5.0 x 10- I> S -1. For these tests, e1. takes one of the values [0,
30e

, 60°, 90",120°,150', 180'-] for 0 ~ S < 0.01 and then ox is abruptly changed to the value
of 00 for the remainder of the loading [0.01 ~ S ~ 0.025]. It is particularly noted that upon
turning the corner the effective stress (j abruptly drops and then recovers to a value close
to the value that was obtained in the proportional loading test. Also, with reference to Fig.
3, it is observed from the cyclic loading test (ox = 180 ) that the Bauchinger effect is
particularly strong during reverse loading.

3. B-P ELASTIC-VISCOPLASTIC \10DEL

In this section, the constitutive equations for an elastic-viscoplastic metal which have
evolved from the work of Bodner and Partom (1972,1975) are reviewed. For convenience,
this set of constitutive equations will be referred to as the B-P model.

Constitutive equations for the response of an elastic-viscoplastic metal have been
developed by Bodner and Partom (1975) for isotropic hardening, and by Bodner (1985) for
directional hardening (which models the Bauschinger effect). Since this theory is developed
without the use of a yield surface or loading conditions, and since the effects of creep are
incorporated in the plastic strain and hardening equations, the model has been referred to
as a unified theory.

The unified theory reviewed by Bodner (1987) utilizes the Prandtl-Reuss flow rule of
the form

SAS 3Z120-C
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(21)

where the scalar function I, is defined by

I I(Z )211J
I. = Do exp L- 2: (Jell .

(22)

In eqn (22), Do and 11 are positive material constants, and Z is a measure of hardening
which is separated additively into a scalar measure of isotropic hardening K and a scalar
measure Pof directional hardening, such that

Z=n:+!J. (23)

The flow rule (21) is supplemented by evolution equations for K and for a tensorial measure
of directional hardening [3, which in the absence of thermal recovery of hardening become

(24a,b)

In eqn (24), tnt and tne are material constants that control the rate of hardening, Wp is the
usual expression for the rate of plastic work

(25)

and Zt and Z, are material constants which control the saturated values of K and [3,
respectively. Furthermore, the unit tensor U and the scalar measure ofdirectional hardening
[3 are specified by

(26a,b)

More recent work of Rubin (1987a, 1989) considered elastic-viscoplastic constitutive
equations for large deformations which exhibit a continuity of solid and fluid states. For
the small deformation version of these equations, the flow rule (21) and the expression for
U in eqn (26a) take the modified forms

where f is a scalar function of the form

I 1(Z )211J
f = f o exp L- 2: (JelT '

(27a,b)

(27c)

(28)

and f o is a positive material constant. It is noted from eqns (27a) and (28) that for large
values of plastic strain rate (or large values of stress (Jeff» Z) the flow rule (27a,b) yields a
fluid-like response because the plastic strain rate increases linearly with stress
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(29)

In contrast, the flow rule (21) with the specification (22) predicts that. in the same limit,
the magnitude of plastic strain rate is bounded

(30)

In spite of this difference it can be shown (Rubin, 1990) that for small and moderate values
of plastic strain rate, the exponential function in eqns (22) and (28) dominates, and the
responses predicted by eqns (21) and (27a) are nearly the same when f o is determined by
the values of Do, the shear modulus G, and a representative value of flow stress (Jeff ~ Y,
such that

(31 )

In the present paper, the modified flow rule (27) with the specification (28) is used
instead of (21), but similar results would be obtained with the original equations. For both
forms, the parameter 11 mainly controls the rate-sensitivity of the response, with high rate­
sensitivity for small values of 11 and low rate-sensitivity for large values of 11. Thus, the
response becomes nearly rate-independent when 11 becomes very large.

The direction U was modified by Rubin (1987b) to take the form (27c) in terms of the
deviatoric stress (J' instead of (26a) in terms of the total stress (J in order to retain the
influence of directional hardening in high pressure applications. Nevertheless, the use of
the total stress to define the direction t.: has proven to be useful for a number of applications
in which the pressure did not become too large.

4. MODIFICATIO"i OF THE FLOW RULE

For general non-proportional loading paths it is possible to quantify the notion of the
reduced effective shear modulus by defining the reduction factor R such that

for e' =I O. (32)

In a more general setting Hashiguchi (1993) used expressions somewhat similar to eqn (32)
to define stiffness moduli. Here, the value of R quantifies the amount by which the shear
modulus is instantaneously reduced because it determines the component of the deviatoric
stress rate in the direction of the loading, divided by 2G times the magnitude of the strain
rate. Notice that the value of R depends on both the magnitude and the direction of the
deviatoric total strain rate e' and plastic strain rate e".

Motivated by this observation, a modified theory is developed in this section which
specifically changes the flow rule (27a) so that the plastic strain rate can be non-coaxial
with the deviatoric stress. This modification also causes the incremental elastic-viscoplastic
theory to indicate a reduced effective shear modulus in corner turning tests. Modifications
causing the drop in effective stress observed in the tests shown in Fig. 3 will be discussed in
the next section.

Firstly, in order to model the non-coaxiality of the plastic strain rate and the deviatoric
stress, the flow rule (27a) is modified to take the form
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(33)

where A is specified by (nb), r is specified by (2~). and N is a deviatoric tensor which is
perpendicular to the deviatoric stress

" . I = 0, ."i' (1' = o. (34a,b)

The non-negative function g(f) and the parameter/are described later.
In order to model the reduced effective shear modulus observed in corner tests. it is

essential in the present formulation to assume that plastic strain rate is an explicit function
of total strain rate. Specifically, N is taken to be the component of the deviatoric total
strain rate 1;' which is normal to the deviatoric stress (1' such that

(35)

where B is the direction of deviatoric stress defined by

(36)

It is important to note that since N depends explicitly on i;'. it is immediately sensitive to
changes in the direction of deviatoric strain rate which are characteristic of a corner test.

In contrast to most constitutive equations for viscoplastieity, it is assumed here that
the plastic strain rate can depend on the total strain rate. Such a generalization allows for
the possibility of a term like N in the flow rule (33). From a physical viewpoint, this means
that under multiaxia1. non-proportional loadings the mobile dislocation density and/or the
velocity of mobile dislocations would depend on the deviatoric total strain rate, in mag­
nitude and direction. in addition to the stress and hardening properties. which is reasonable.

It is interesting to note that various investigators have examined the case, somewhat
related to eqn (33). of plastic straining due to a stress rate component tangential to a yield
surface. A formulation of this kind and a review of earlier work was presented recently by
Hashiguchi (1993).

Returning to the form (33) of the flow rule. it is noted that for proportional loading,
the evolution of plasticity causes the deviatoric stress (1' to align with the direction of
deviatoric total strain rate 1;', which causes N to vanish so that the form (33) reduces to
(na.b). However. for non-proportional loading N does not vanish and plastic strain rate
has a component normal to deviatoric stress. This deviation from proportional loading can
be quantified by defining the phase angles {}(I;') and (}(I;p) relative to the direction of
deviatoric stress B by

I I; l
/!(i;') = cos I L1;'1' BJ (37a,b)

such that 11(1;') and 11(1;1') are in the range [O.n] and vanish for proportional loading. It will
be shown in the corner tests simulated later in this section that when the corner is turned,
0(1;') and 11(1;1') experience abrupt increases to values less than 712. Then for subsequent
maintained proportional loading following the corner turn. the values of O(i;') and 0(1;1')
decay back to zero.

Next. it can be shown that the flow rule (33) also models the reduced effective modulus
in shear observed in a corner test. To this end, usc is made of eqns (I). (n), (33) and (36)
to obtain the expressions

iJ = k(I'i;)1 +iJ.

iJ' = 2(/i;' - 2(f(/(f)IN - rl(1'IB.

(38a)

(38b)
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Moreover, with the help of the definition (35) the component 6 11 of the stress rate can be
written in the form

0-'1 = L.'/k/~·;"/ - r(J;.I~ L'lki = L,~'k/ + L~):" (39a,b)

(39c,d)

(3ge)

where I:", (J;; and BII are the components of t, (J'. and B. respectively, ()u are the components
of the Kronecker delta and H'lkl is a fourth order tensor which operates on a second order
tensor to obtain its deviatoric symmetric part. The fourth order tensor L Ukl is separated
into an elastic part C,(J and a viscoplastic part LiTI to emphasize that the present model is
not contained in the class of constitutive equations analysed by Tvergaard (1988) which
does not include a term like Liltl

Now, eqn (37a) can be used to rewrite expression (31) for the reduction factor R in
the form

flal cos(}(i;') -(J(f)!' I-cos' (i(i;') , l for t' =1= o.
1GIi;'1 ..., . I J (40)

This expression shows the explicit dependence of R on the angle (iW) between the deviatoric
stress and the deviatoric strain rate. For the case of proportional loading OW) vanishes and
eqns (31) and (40) yield the result that

(41 )

For monotonic proportional 10adll1g. the tensors (j', f;'. GI' and their rates have the same
constant direction so that eqn Oa.b) can be used together with the definition (32) to deduce
that

(42)

which can be recognized as the normalized tangent modulus in shear Ct. Furthermore,
using expression (17) and the standard definition of the tangent extensional modulus E"

E (43)

where 1:: is the axial strain rate and ",'11 = " in a uniaxial stress test, it can be shown that a
relationship of the type (6a) holds with E and C replaced by Et and Ct. Consequently, for
monotonic proportional loading the reduction factor R can be expressed as a function of
E, and elastic constants. Further in this regard. it is noted that the approximation discussed
by Bodner ('{ a/. (1991) and Bodner (1992) for that case allows R to be expressed as a
function of the stress and hardening variables only.

Alternatively. if the corner is turned abruptly, (I(s') instantaneously becomes rr/2 and
eqn (40) reduces to

R = I -q(f)j for i:' =1= 0, (44)

which can be seen to be ll1dependent of the magnitude of the total strain rate. As another
limiting case. the direction of the dcviatoric total strain rate can be kept constant and its
magnitude can be increased abruptly. Since f and (j' are explicitly independent of total
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strain rate, when the magnitude of the total strain rate becomes large, expression (40)
reduces to

R = [I ~g( f)fll - cos' fl(i;')}] for j;' =f. O. (45)

This shows that the response to an abrupt change in total strain rate becomes elastic if the
loading is proportional [with AW) = 0] and smoothly transitions to the limiting value (44)
as OW) approaches n/2.

Returning to the result (44) it is noted that the value of the reduction factor R is
independent of the value of WI, and is controlled by the value of gent: Physical con­
siderations require R to remain in the range zero to unity. Thus, constitutive equations
must be specified which require

o~ g(f)f~ I. (46)

For definiteness, it is assumed that y(f) is a non-decreasing function which satisfies the
properties that

g(O) = 0, y( x) = I, dg >- 0
df /' . (47a,b,c)

The condition (47a) is imposed to ensure that the reduction factor R in (44) will remain
unity whenever plastic deformation vanishes (f = 0). Also, condition (47b) is imposed so
that the restriction (46) will require the simple condition that the value of the parameter f
remains less than unity. The specific functional form for g(f) should be motivated by
experimental data which are presently unavailable. However, for the simulations presented
later, the simple form

f
y(f) = h+ f (48)

is specified which has the desired features (47) and is controlled by a single material constant
h. For simplicity, the value of h will be taken sufficiently small so that g(f) essentially
becomes the Heavyside function which is equal to unity during plastic deformation with
positive f.

Now, with the help ofeqns (44) and (48) it can be shown that the factor (l-f) controls
the minimum value of the reduced effective shear modulus since

R = [I -g(f)/] ~ (I -f). (49)

In order to motivate a functional form for the parameterf, it is noted that from a physical
point of view f is expected to depend on the hardening parameters. Since directional
hardening usually increases much more rapidly than isotropic hardening (Chan et al.,
1988), the stress-strain curve shown in Fig. Ic suggests that directional hardening is
increasing rapidly in the range {o.n GPa ~ (JelT ~ 0.32 GPa} after which isotropic hard­
ening continues to harden. Using the result (44) to interpret the torsional buckling exper­
iments shown in Fig. 2, one concludes that the value of/starts out at zero and increases in
a bilinear manner with both directional and isotropic hardening variables. This basic
character can be represented in terms of the hardening variables and related constants,

(50a,b)

where fl and j~ are material constants, and I\/) is the initial value of K. Also, the condition
(SOb) is imposed in order to satisfy the restriction (46). Further in this regard, it is noted



Incremental elastic-viscoplastic theory 2981

that for proportional monotonic loading the value of IPI approaches Z, and K approaches
ZI so thatfapproaches its saturated value of (II +f~). This means that the minimum value
of the reduction factor R is (I -fl -f2)' which remains positive and ensures that there is
always some resistance to torsional inelastic buckling. In contrast, the secant modulus
associated with eqn (19) predicts the unphysical result that the reduction factor GjG
approaches zero for continued monotonic loading.

In summary, it is noted that aside from the standard equations for stress (I) and
effective stress (2), the modified theory of this section is characterized by : the modified flow
rule (33) for plastic strain rate with A given by (27b), 1 given by (28), N given by (35), and
g(1) given by (48): the expression (23) for the scalar measure of hardening Z, evolution
equations for hardening (24a,b) with the modified direction U given by (27c) and expression
(26b) for the scalar measure of directional hardening f3; and the equation (50a) for the
functionfwhich controls the value of the reduced effective shear modulus in corner turning
tests. These differential equations (33), (24a), and (24b) are integrated, subject to the initial
conditions

(5Ia,b,c)

For the examples considered in this section and the next, it is assumed that the material is
stress-free and fully isotropic in the initial configuration so that

epo = 0, /30 = o. (52a,b)

In addition to the material constants {10, 11, ZI, Z" l11J, l11 2 } associated with the B-P
theory of Section 3, the modified theory of this section req uires only three material constants
{b,II ,I2} in eqns (48) and (50a), which characterize the response to corner turning tests.
For the modifications introduced in this section, the restriction imposed by the second law
of thermodynamics [e.g. Rubin (1989)] which requires plastic deformation to be dissipative
with the rate of plastic work Hlp being non-negative,

• ., l(J~fI
W =(j'e =----·-->-0

p p 3G;/' (53)

is satisfied automatically since 1 is non-negative.
To exhibit the predictions of the modified theory of this section, attention was confined

to isochoric deformation (e = e') with the components of e' given by eqn (20). Then, values
of the material constants appropriate for matching the experimental stress-strain curve of
Stowell (1951) in the form of Fig. Ic and the test results shown in Fig. 2 were determined:

G = 26.6GPa,

l11 1 = 290 GPa' I, K o = 0.33 GPa, ZI = 0.50 GPa.

l11 e = 20,000GPa -I, Z, = 0.12 GPa,

b = \0-6 S I. II = 0.23. f~ = 0.70.

(54a)

(54b,c)

(54d,e,f)

(54g,h)

(54i,j,k)

The value of G is the same as in eqn (12c): the value of 1 0 is representative of 6061-T6
aluminum (Rubin, 1990) ; the value of 11 is representative of aluminum at room temperature
(Bodner, 1987) : and the value of b was chosen to be about three orders of magnitude lower
than the value of 1 during loading. This small value of b was chosen so that g(l) is nearly
the Heavyside function which vanishes when 1 vanishes and equals unity when 1 is positive.
The values of {m l , Ko, ZI' me, Z,} were chosen to produce reasonably close correspondence
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Fig. 4. (a) ComparISon of the simulated stress strain curve with points from the experimental
curve of Stowell (ILJ5 I) : (b) theoretical predictions of the reduced modulus (1 -fl compared with

experimclltal values of C; G for Stowell (195 I). and IJ for Gerard and Becker (1957).

with the monotonic loading experimental stress-strain curve (see Fig. 4a) with
5 = 5.0 x 10- 6

S - I. and the constants U~.f~} were chosen to produce reasonable values for
the reduced effective modulus in shear. In particular, Fig. 4b shows the experimental results
of Stowell (1948) and of Gerard and Becker (1957) together with the value of R ~ (I-f).
It seems that the proposed expression for I yields reasonably good values of the reduced
effective shear modulus for inelastic bucking of the cruciform column.

The response to corner turning tests of the type performed by Ohashi and Ohno (1982)
was also considered. again with 5= 5.0x 10 f, S-I. To model their aluminum alloy, the
following material constants were specified:

G = 26.6GPa.

1Il1=I,OOOGPa I. "o=OAGPa, ZI=0.53GPa,

I1h = 40.000 G Pa I. Z, = 0.3 GPa,

h = 10 6 S I II = 0.23, II = 0.70.

(55a)

(55b,c)

(55d,e,f)

(55g,h)

(55i,j,k)

The values of {G. f o. h,fl,f~J were not changed, but the values of {ml> Ko, ZI> m2, Z3}
were chosen to approximately match the response to monotonic proportional loading with
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Fig. 5. Predictions using the theory of Section 4. (a) Simulations of corner turning tests; (b) non­
coaxiality of deviatoric total and plastic strain rates relative to the direction of deviatoric stress.

::x = 0 in eqn (20) (it is noted that their modified definition of effective stress (j is not equal
to (Tefl)' Also, the value of n was chosen to be representative of aluminum at elevated
temperature (Bodner, 1987). Figure Sa shows the response to simulations with IX taking one
of the values [0°, 30, 60, 90,120 . ISO, 180] forO ~ S < 0.01 and then abruptly changing
to the value of 0 for the remainder of the loading [0.01 ~ S ~ 0.02S]. The curves for
::x = 120", I SOC, and 180 are shown as broken lines because the strong Bauschinger effect
exhibited by the experiments (Fig. 3) is not modeled well by the simulation. On this matter,
the hardening constants (SSd-h) were chosen to obtain good fitting of the initial portion
of the monotonic curve without regard to the fully reversed loading curve. Figure Sb
exhibits the non-coaxiality of plastic strain rate by showing the angles B(n and B(Ep) defined
by eqn (37a,b) and predicted for a corner turning test with IX = 90° for 0 ~ S < 0.01. In
Fig. Sb, turning the corner leads to abrupt increases of the angles B(n and B(Ep ) to near
90°, followed by slow decreases toward zero.

Comparison of the experimental results shown in Fig. 3 with predictions of Fig. Sa
indicates that the drops in effective stress for the tests with IX '# {l80" or Ol} are smaller
than those observed in the experiments. Consequently, an additional modification of the
theory is developed in the next section which enhances the magnitudes of these drops.

5 MODIFICATIONS OF DIRECTIONAL HARDENING

The differences between the experimental results shown in Fig. 3 and the predictions
shown in Fig. Sa indicate that the effective stress drops more rapidly and drops to a lower
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value in the experiments. Such a large drop appears to be consistent with a physical
interpretation that a change in straining direction activates new slip planes which are initially
unhardened. Consequently, this change will primarily influence directional hardening. In
order to properly model this effect. two modifications of the scalar measure f3 of directional
hardening are proposed.

Firstly, it is assumed that the direction U in the evolution equation (24b) is different
from the direction B of deviatoric stress (36) used to define the scalar measure f3 of
directional hardening (26b). Specifically, U is specified by the direction of plastic strain rate
and f3 is the component of fJ in the direction of deviatoric stress, as previously, so that

(56a,b)

Secondly, it is assumed that the constant 1111 in eqn (24b), which controls the rate of
directional hardening, is a function of the direction of deviatoric strain rate of the form

(57)

where 11111J and ([1 are material constants and OW) is defined by eqn (37a). This causes the
rate 111 2 to increase for non-proportional loadings.

The influence of these modifications can be explained by considering a 90' corner
turning test in which the direction of the deviatoric total strain rate is abruptly changed.
During proportional loading into the plastic range, the directional hardening tensor fJ
evolves in the direction U of plastic strain rate such that the scalar f3 tends to saturate at
the value Z,. Under these conditions the directions U and B coincide, the normal tensor N
vanishes and 111 1 = 111 11)' so the theory reduces to that discussed at the end of the last section.
However, in response to an abrupt change in the direction of total strain rate, the plastic
strain rate instantaneously obtains a component parallel to N(N' B = 0), so that fJ tends
to evolve in a direction different from B. This causes a decrease in the value of the scalar f3
which, in turn, causes a decrease in the value of effective stress (Jell' Also, the value of 1111 is
increased at the instant of direction change to the value 11110 exp(([1), which causes the drop
in f3 to develop more rapidly.

Additional simulations of the corner turning tests were performed with this modified
theory using the material constants (55), except that 1111 in (SSg) is replaced by the function
(57) with

111 11J = 40,000 GPa I, ([1 = 3, (58a,b)

which is the value of 1111 given previously by (SSg). Figure 6 shows the influence of these
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Fig. 6. Comparison of simulations of a 90 corner turning test using the theory of Section 4 (U = B)
with those using the theory of Section 5 (a, = 0 and 3).
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Fig. 7. Predictions using the theory of Section 5. (a) Simulations of corner turning tests; (b) non­
coaxiality of deviatoric total and plastic strain rates relative to the direction of deviatoric stress.

modifications for the 90 corner turning case, and Fig. 7a shows that the overall predictions
of the modified theory of this section are much closer to the experimental data in Fig. 3.
However, the strong Bauschinger effect indicated by the experimental data is still not
adequately modeled by the modified theory. Finally, Fig. 7b shows the non-coaxiality for
a 90" corner turning test.

6. A SIMPLE RATE-INDEPENDENT THEORY

In order to emphasize the importance of the rate-dependent nature of the viscoplastic
theory developed here, it is useful to discuss some of the difficulties encountered in attempt­
ing to develop an associated rate-independent theory that would indicate the same effects
as the modified model of Sections 4 and 5. To this end. it is noted that the viscoplastic
model of Sections 4 and 5 predicts a relatively rate-insensitive response when the parameter
n in (28) becomes very large. This is because, for large values of n, the function r in (28)
nearly vanishes whenever (Jeff is less than the hardening parameter Z. Thus it is natural to
consider an associated rate-independent theory which uses a yield function F of the form

(59)

where 8p' K, Pare determined by the evolution equations (33).(24a) and (24b), respectively.
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Moreover, for rate-independent response the function g(r) in the modified flow rule (33)
is specified to be the Heavyside function

for r ~ 0

for r> o.
(60a)

Within this context, the value of r is no longer determined by the functional form (28) but
rather is determined by a consistency condition which requires t to vanish during plastic
loading.

At present it does not seem possible to prove that the resulting value of r is positive
for all loading situations. Moreover, in view of the condition (53), this indicates that plastic
deformation may not always be dissipative so that the second law of thermodynamics may
not be satisfied. However, for the simpler case when directional hardening is neglected
(Il = 0), with

(60b)

it can be shown using the consistency condition associated with loading conditions in strain
space (Naghdi and Trapp, 1975) that r is given by

r=o for {F<O}or{F=OandO"'e'~O}, (61a)

9G 20".j;'
r=-----­

K2[3G+ Kn1 I(ZI-K)]
for {F= OandO"'e' > O}. (6lb)

It is noted that since r in eqn (61 b) is positive during loading, the plastic dissipation given
by (53) is also positive.

With the help of eqns (38), (40), (60) and (61) it can be shown that during elastic
response, unloading, or neutral loading

if' = 2G(B'J;')B+2GN, R = 1,

whereas during loading

if' = 2G[1- [3G 3GZ ]l(B' e')B+ 2G[1-f]N,+ Kn1 1( I -K)

[
3Gcos 2

8(e') 2 ., l .,
R= 1-[3G+Kn1

I
(ZI_K)]-f{1-cos B(e)} fore =/-0.

(62a,b)

(63a)

(63b)

It then follows from eqns (61) and (62) that for a 90c corner turning test 0" • e' vanishes and
the response corresponds to neutral loading with R = 1. On the other hand, for an almost
90° corner turning test with 0". e' positive but small, the above rate-independent model
predicts a reduced shear modulus with R ::::: (I-f). Thus, in contrast with the rate-dependent
model of Sections 4 and 5, the rate-independent model of this section could predict a
discontinuous change in the value of the reduction factor R when plastic loading begins.

In conclusion, the above exercise indicates essential difficulties in using the associated
rate-independent theory with the yield function (59) to model the main response charac­
teristics due to a rapid change in the direction of straining. Those difficulties are not present
in the rate-dependent viscoplastic counterpart.
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